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EFFICIENT CALCULATION OF DIRECTIVITY INDICES
FOR CERTAIN THREE-DIMENSIONAL ARRAYS

INTRODUCTION

Directivity Index (DI) may be defined as a measure of the improvement in the signal-to-
noise power ratio (S/N) that a beamformed array provides in an ideal isotropic noise field with a
perfectly correlated signal, relative to an omni-directional array element in the free-field, i.e.,

(S/N)

_ array output
=10 Log TN 7 : 0))

field omni—element

DI =10 log DF

For an array with arbitrary geometry and element locations, the beamformed array single-

frequency amplitude response! may be written as
_ L\ S -
A®,0)= t—zth g,6,0) exp(i(k -k ()-T), Q)

where A(8,0) is the array's angular response to an arrival from azimuthal angle 6 and polar angle

¢, T is the total number of array elements, w, and g, are, respectively, the amplitude shading

and element angular sensitivity of the t-th array element, X is the wavevector corresponding to
. . - . . .

an arriving acoustic planewave, and k¢ is the wavevector to which the array is steered. The

corresponding steering angles are 6 ,¢,. The t-th array element position is defined by the

. -
coordinate vector I,

A spatial coordinate system (with corresponding wavevectors) for an array oriented in the
xz-plane is illustrated in figure 1, along with the definition of spherical angles 6,¢. The
programs supplied in the appendices of this report, to calculate directivity, use the geometry of
figure 1 to define input parameters. For the programs planar-xz-equal.f and planar-xz-grid.f, a
rectangular array in the xz-plane is assumed. Program planar-xz-grid.f allows for arbitrary
element grid spacing, that is, dx or d; may vary from element-to-element. The program
volumetric-grid.f assumes an array configuration which allows for cylindrical curvature about
the x-axis. At each fixed array row x T elements are located at the same positions {yn, zp}; if all
yn are equal, the array becomes a plane parallel to the xz-plane.
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Figure 1. Array Coordinate System and Spherical Angles Denoting
Incident Planewave Arrival Direction 6,0

With the aid of equations (1) and (2), the components which comprise the calculation of
the directivity index can be written as

S

ff—omni =

S, (3a)

where S is defined as the given signal power level, while

Sarray = SIA(OS’¢S)I2’ (3b)
Nﬁ,_om. = TINsin(qb)d(})dG , (3c)
00

where N is defined as the isotropic noise level, while




2rnr

Noe = | [NIAB, 0)f sin(9)dd6 . 3d)
00

Noting that equation (3c), is simply 4nN, and canceling the signal and isotropic noise

levels, equation (1) reduces to

4n|A(9s,¢s)lz

DI =10 Logs s C))

|A(8,0) sin(¢) d9dO

Sy
o3

)
2
where IA(95,¢S)| is the array power response at steering angles 98,¢S.

Equation (3d) indicates an integral with limits that account for all acoustic arrival angles.
Hence, the directivity expression above assumes an unbaffled, or free-field, array configuration.

In a baffle configuration, N___ would be reduced, resulting in an increased directivity.

ay
However, the programs supplied here include directional (such as cosine to a power) element
sensitivities, g t(6, ) in (2), which inherently provide the gains realized from a baffle. There is
no need to correct the directivity values yielded by the programs to account for baffling of

isotropic free-field noise.

For a line array with constant inter-element spacing, the double integral in equation (4)
may be evaluated exactly at the frequency for which spacing dx = A/2, regardless of the steering

direction. This leads to

DI=101og =2 L, (5)

Accurate directivity predictions for arbitrary array configurations, at general frequencies
of interest, require numerically integrating the double integral given in equation (4) and
calculating the maximum array power response, lA(Om,q)m )l . It should be noted that the
maximum array response may not occur precisely at the steering angles (Gs,tps). Array




curvature, unequal array element spacing, element sensitivity, and shading weights act to shift
the maximum response axis from (6,,9,) to (6,4, ). The programs supplied here have global
and local search procedures which obtain the peak power response and the corresponding angles

0r0,)-

The remainder of this report will discuss accurate and efficient numerical integration
methods for evaluating the double integral of equation (4). The focus is to reduce the number of
evaluations required of the integrand, in order to achieve rapid convergence and accuracy with a

minimum of computational effort.

For very small partitions, the Riemann sum will provide a reasonable approximation of
the definite integrals in equation (4). Indeed, if an exceedingly large number of narrow
rectangles (or augmented partitions) are used in the Riemann sum, the approximation would be
quite accurate. This implies, however, an enormous amount of function evaluations, each of
which is computationally time-consuming. For a large number of array elements, on the order of
thousands, such a simplistic approach would be unfeasible. Vector and matrix operations used in
high-performance computation software, such as MATLAB ®, do provide quick function
evaluations and have built-in numerical integration routines. However, these computational
benefits can be reduced by the amount of RAM available on a given computer system.

Swapping memory space between a system's hard drive and RAM can be inefficient; resulting in
lengthy integration times. The goal then is to use an integration method which yields a highly
accurate integral approximation with a minimum number of function evaluations.

Due to the periodicity and analyticity of the integrand |A(6,q))|2 in azimuthal angle 6, an
elementary closed-type Trapezoidal formula was used for evaluating the outer 6 integral in
equation (4) over a full period (0,2x). The inner integral, over polar angle ¢, uses a Gauss-
Legendre quadrature formula of order m, where m can vary over the twelve values (16, 24, 32,
48, 64, 96, 128, 192, 256, 384, 512, 768). The Gauss-Legendre method is generally significantly
more accurate than an equal-interval formula, such as the Trapezoidal rule, for a given number of
function evaluations. However, Gauss quadrature was deliberately not chosen for the outer 6-
integral due to the particular integration limits and the integrand periodicity and analyticity in 6.
The Trapezoidal rule is extremely efficient for integration of an analytic periodic integrand, when
conducted over a full period.2 Generally, efficient numerical evaluation of multi-dimensional
integrals requires examination of the nature of the integrand and the integration limits; rarely is
one procedure optimum for all integrals.




FACTORIZATION OF ARRAY RESPONSE

The array amplitude response A(8,9) was given in equation (2) for the general three-
dimensional array with arbitrary element locations, weights, and element responses, where T is
the total number of elements in the array. In the general case, the sum of T terms can be
evaluated only by calculating every individual complex term and summing up those T quantities.
This is a particularly time-consuming task, especially when T is of the order of 10,000 or more.
When coupled with the fact that the directivity index requires computation of a double integral,
namely equation (4), which must be repeated for each different frequency and/or steering angle,
the computational burden becomes excessive. Furthermore, as the number T of elements
increases, the array power response |A(9,q))|2 becomes even sharper in angles 0,0, thereby
requiring still finer evaluation of the integrand in equation (4), in order to retain accuracy in the
final DI calculation.

In this section, we will significantly reduce this computational burden for a particular
class of arrays and weights, by factoring the amplitude response A(6,9) into a product of two
sums which have far fewer total terms than T. For example, an array of 50 by 200 elements will
require evaluation of 50 + 200 = 250 terms instead of 50 * 200 = 10,000 terms, a savings in
execution time by a factor of 40. Additional savings in time are achieved by precomputing and

storing quantities that are used repeatedly in the program for calculation of the DI. This storage
requirement is minimal, even for the very large arrays of interest here.

ELEMENT LOCATIONS

We use the coordinate system illustrated in figure 1. Receiving elements will be located
only on L planes of fixed x, namely, at {xe} for 1<£<L, where each x, is arbitrary. Thus,
these planes need not be equally spaced in x.

At each x-coordinate X, N elements are then located at the points yp,z, for 1 < n < N;
these pairs {yn,zp} are identical for all X, However, each location yp,zp is arbitrary. This
generality allows for the array to take on a cylindrical shape, for example; other more general
three-dimensional arrays are also allowed. In the special case where the {yn} are all equal, this
becomes a planar array, parallel to the xz-plane; however, the L locations {x l} and the N
locations {z,} are still arbitrary.




The array is seen to contain a total of T = L N elements, in L parallel planes of N
elements each, with an identical repeated (arbitrary) configuration in each x-plane. This is the
general configuration considered here. Any three-dimensional array which cannot be put into

this form will not be covered by the following analysis and simplifications.

Each element at x,,y ,z_ has its normal in the yz-plane, at an angle yy, relative to the
z-axis; see figure 2. That is, the element lies in the yz-plane for every element in the array;
however, the element orientation angle Yy can vary with location yp,zg, but not with location x ’
Thus, the direction vector of the n-th element boresight is 0 i + sin(y ) J+cos(y o) k for the

element at Xgr¥poZp-

ELEMENT
,~ NORMAL

<
3
<V

Figure 2. Element Locations at a Fixed x y




ELEMENT RESPONSES

The cosine of the angle Bp(6,0) between the n-th element normal and a general arrival

direction 6,9 is given by the dot product
cos B n(e, ¢)=[0i+ sin(\pn) Jj+ cos(wn) K]e
o [cos(B) sin(¢) i + sin(B) sin(d) j+ cos(9) k] = (6)
= sin(\yn) sin(0) sin(¢) + cos(y n) cos(0) .

Notice that this quantity is independent of £ and x,, due to the element locations and boresight

orientations.
We are interested here in relative element responses of the form

r (8,0)=[cos B, (B,)]° for[B (8,¢)<m/2, Q)

where v is a power under our control. By means of the procedure presented in Appendix A, the

element responses can be approximated by

- 1 2,13 11
rn(9,¢).—_exp[-u(un+-2-un+§un+...+fun)], ®
where I is an integer under our control, and
u, = 1-cos Bn(O,d)) =1- sin(\un) sin(B) sin(¢) — cos(\yn) cos(d). ®

Here, we also used equation (6). We will use the element response r,(9,¢) to an arrival from
direction 0,0, as given by equation (8) and (9), for all the calculations herein. The region of
applicabilityis 0 <0< 2r, O0<d< .




ELEMENT WEIGHTS

A multiplicative weight o nB ¢ 1s applied at general element location x o Y2, for

1< £<L,1<n<N. The total effect of weighting and element response is therefore given by

w,0.0)=a B, (6,0). (10)

It is important to observe that this total effective element response is factorable in the variables n
and /; it need not be factorable in 6 and ¢.

ARRAY AMPLITUDE RESPONSE

For notational simplicity, the following definitions will be used below:
X, = 21tx£ /A, Y, = 21tyn IN, z,= 27czn /A, expi(x)=exp(ix), (11)

where A is the wavelength of the single-frequency arriving planewave. When the features above
are incorporated into the array amplitude response (2), it can be rewritten in the form

N L
A(6,¢) = Z ane(e,q)) expi[gge cosBsing+y sin@sing+ z, cosd
n=1 /=1
(12)

_(51 cos6s sing +y. smGS sing +z, cosq)s)] ,

where 6 @ 1s the steering direction, and 6,¢ is the planewave arrival direction. Finally, when

the particular form of weighting in (10) is employed, amplitude response (12) further simplifies
to the desired factored form

N
A(8,0) = Zan r (6,0) expi(_)_'n sin® sin¢ + z,, cosq)—an) X
= (13)

=1
L
X ZBZ expi(gz cos® sinq)—be),
£=1

where parameters




a =y, s1n9S smd)s +z, cosq)s , b =x, coseS smcj)s . (14)

I

The computation of amplitude response A(6,¢) by means of (13) requires an N-fold summation
on n and a L-fold summation on £, which constitutes a total of N + L complex terms. When
these complex operations are completed, the magnitude-squared operation yielding power
response |A(8, q>)|2 is taken. The complex function expi(x) = exp(ix) = cos(x) + 1 sin(x).

NUMERICAL EVALUATION OF DOUBLE INTEGRAL

The major computation required in DI calculation (4) is the double integral
T 2n 2
V= [dosing [do [A(,0) . (15)
0 0

When the factorized expression (13) is substituted in (15), the result is expressible in the form

2n 2

fas
0

L

ZBe expi(_)gl cos0sind— bg) X
{=1

) T
V = [ d¢ sing
0

(16)

N 2

ZOLH r (6,0) cxpi(zn sin@ sin ¢ +z, cos — an)

n=1

X

Element response Tt n(6,(1)) is given by (8) and (9).

The integrand in (16) is analytic in 6 and ¢. Furthermore, it has period 2x in 6, and the 6
integral is over this complete interval. This makes the 6 integral in (16) a good candidate for
numerical evaluation via the trapezoidal rule [2; pp. 53-59]. On the other hand, the ¢ integral is
only over (0, ), which is half the period in ¢. This suggests the Gauss-Legendre rule for
numerical integration on ¢. This mixed procedure has been utilized for the approximate

evaluation of (16).

The specific formula for M-point Gauss-Legendre integration of function f(x) over
interval (a,b) has the general form




a -1 1
(17)
M
_b-a _b+a , b-a
=7 2% )i =" 5t

The quantities {tm}are the M zero locations of the M-th order Legendre polynomial Py(x), and
are symmetrically located in the (-1,1) interval. The M Gauss weights {wp, } are all positive.
These quantities (tm and wpy for M up to 768) are required as input to the numerical programs
provided in the appendices. Gauss-Legendre weights and zero-locations are available in many

references.3 When combined with the trapezoidal rule for integration on 6, there follows for
1

(16), with ¢_ = —;—n:+51t t_,0, =2nk/K,

n 4 . 2 [ . . 2
A% =5 Zwm sing sz-:uzﬁe expx(ge cos®, sing  —b,f x

m=1 =1
(18)
N 2
X Zan rn(ek,¢m) expi(zn sinOk sing_ +z, cos¢  — an)‘ ,
n=1
where the element response is now expressible as
r.(0,,0_)=exp|-v utsu+iud e Lyl (19)
n\Vk*Pm/ = XP 2 34 I
with
u=1l-siny sin® sing —cosy_cos¢ . (20)

For trapezoidal integration, the interval (0,2r) was cut into K panels, each of width 2n/K.

However, the two usual edge weights of 1/2 have been combined into a single unity weight at
0 = 2r, by making use of the periodicity in 6. Hence, the summation on k in (18) goes from 1 to

K, using unity weights throughout.

10




Expression (18) is the final result to be used for numerical evaluation of the double
integral for V in (15), when the array is three-dimensional. Quantities such as sin8, sinom, etc.,
that can be done once and for all, have been precomputed and stored for access in (18) as
required, in order to minimize the execution time. A program for the evaluation of (18) is
available in Appendix B under the title volumetric-grid.f.

For a nonisotropic noise field which depends only on polar angle ¢, say with power
dependence D(¢), the only changes required are to insert D(9) after sin ¢ in (15), and to insert
D(0m) after sin ¢, in (18). Of course, the integral of product sin(¢) D(¢) over (0,7) must also be

evaluated.
SPECIALIZATION TO PLANAR ARRAY, ARBITRARY GRID

When all the y-coordinates {yn} are zero (or constant), the array reduces to a planar array
parallel to the xz-plane; however, the element locations can still be irregular, namely at each
intersection x,,z_ for 1<{<L,1<n< N. Every x-coordinate x, is arbitrary, and every
z-coordinate zj is arbitrary in this grid structure.

When the boresight of every individual element is perpendicular to the array plane, angle
Wy in figure 2 is equal to 7t/2 for all n. This makes u=1-sin, sin¢ in (20), which is
independent of n; therefore, 1, (8,,0 ) in (19) is also independent of n, allowing it to be factored

- out of the n summation in (18).

Also, when all the {yp} are zero, the latter expi term in (18) becomes independent of k,
allowing the entire magnitude-squared quantity in the second line of (18) to be factored out of the
k summation. The end result is the simplified form

x I . X . ’
VEE ZWm sing_ Z anexpl(gncos(bm —an) X
m=1 n=1
@1
21 L . . ’
ngllr(ek’q)mﬂ ;::1 Beexpl(gzcosek sing_ —bg) ’

where now

11




2 1 1 1
Ir(ek,(pm)' =cxp[—2(u+§u2 +§u3+...+TuI):I, (22)

with

u=1-sin Gk sin(bm . (23)

It has been found that these manipulations and simplifications result in approximately 30
percent savings in computation time relative to the more general volumetric form (18). A
program for simplified form (21) is listed in Appendix C under the title planar-xz-grid.f, where
the xz qualifier emphasizes the fact that the planar array is parallel to the xz-plane.

SPECIALIZATION TO PLANAR ARRAY, EQUAL SPACINGS

A useful additional simplification is possible when the planar array has equally spaced
elements in both the x- and z-coordinates. Specifically, si:;pose that the element locations are
given by

X£=de for1<¢<L, z =nd, forl<n<N. (24)

Substitution of these values into (21), and reference to (11) and (14), results in the modified form

N 2
(27 2

21 anexpl(sz(cos¢m —cos¢s)nj —KE X

n=

T M
A" =5 ZWm sinQ_
m=1

(25)

L ) 2
Z‘i Blexpi(—;—zgdx (cosB, sing  —cosf sind)s)fj

kEI; lr(ek’q)m 12

where (22) and (23) are still relevant.

The reduction in computation time is now obtained by taking advantage of the recursive
capability of the expi function:

expi[ny] = exp[iny] = exp[iy]exp[i(n — 1)y] = expi[ylexpi{(n - 1)y].  (26)

12




Thus, one complex multiplication gives the next term necessary in the n or £ summations in
(25), without the need for any storage.

It has been found that these manipulations and simplifications result in approximately 60
percent additional savings in computation time relative to the more general planar form (21). A
program for simplified planar form (25) is listed in Appendix D under the title planar-xz-equal.f,
where the xz-qualifier again emphasizes the fact that the planar array is parallel to the xz-plane.

13




RESULTS

Directivity calculations, using a low-order quadrature formula, are given in Ref. [4] for a
9-element line array, a 60-element planar array and a 21-element cylindrical array. For arrays
with relatively few elements, such as these, there is little need to be concerned with optimal
integration procedures. Computationally efficient integration routines can provide order-of-
magnitude speed up times, but this is of little importance if the original calculation only takes a
few seconds. However, the arrays considered here are large, with dense element spacings, and
the frequency and steering angular dependence of the directivity must be examined in detail.
Therefore, it is essential to have an efficient means to accurately evaluate the two-fold integral of
equation (4).

Table 1 below summarizes the planar and conformal array lay-outs used for preliminary
numerical directivity calculations. Directivity was calculated at a number of frequencies and
assumed a sound speed of 4,900 ft/sec.

Table 1. Planar and Volumetric Array Input Parameters for Directivity Calculations

Parameter Input Field planar-xz | volumetric-
equal.f grid.f
No. of Elements along x-axis L =200 v v
No. of Elements along z-axis N =50 \ X
Element spacing along x-axis Ay =3.5in. N N
Element spacing along z-axis Az =3.61n. ‘/ X
Element spacing (arc length) ds =3.61n. X v
Os-steering angle (azimuthal) 05 = m/2 rads N N
Qs-steering angle (polar) Os = /2 rads \ v
0-angle increment A8 =0.0001 rads N \
¢-angle increment A¢ =0.0001 rads N \

X = Input not required.

For both examples, the total number of array elements was 10,000. The angular
increment parameters shown are necessary in order to obtain a reasonable estimate of the
2 .
maximum array response, |A(9 ' ®m )l . In general, the number of angular samples is related to

the array length, and frequency, i.e., we must require angular sampling of the order
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1
where A is the acoustic wavelength and L = (Li + Lzy)2 . For the numerical programs provided

here, this 6 and ¢ sampling requirement corresponds to the res%‘iction K>2rn Le /7\, for
0—sampling, where K is the program parameter kc, and M > EZ—Le /7L for ¢-sampling, where M
is the program parameter mc. Additional input parameters, common to each program, are given

in Appendix B.

The computed directivity is given in table 2. As expected, the planar array geometry
yields slightly greater directivity than that of the conformal array; the differences are due to array
curvature. With factorization, it took 154 seconds to compute the directivity value 38.57 dB (at
4,000 Hz) using the program volumetric-grid.f on a SUN SPARC Station 10. Without

factorization, the time required to compute this value was on the order of 1 hour, 10 minutes.

Table 2. Directivity DI (dB) Calculated From planar-xz-equal.f and volumetric-grid.f

Frequency (Hz) DI planar-xz-equal.f (dB) | DI volumetric-grid.f (dB)
4,000 38.71 38.57
5,000 40.63 40.49
6,000 42.21 42.06
7,000 43.54 43.39
8,000 44.69 44.54

As previously discussed, array gains in nonisotropic noise fields (having variations in
polar angle only) can be evaluated using the programs supplied here. In many ocean
environments, such as in the Bering or Norwegian Seas, a distinctive and well-defined notch or
dipole-like directivity pattern is present in ambient noise. This variation has been described as a
vertical noise profileS and may be modeled using the continuous expression

2
D@ =1-A, exp{—mzﬂ)—}. 28)

20d
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Figure 3 illustrates a typical nonisotropic noise power dependence for the parameters
A4 =0.9, which controls the notch depth, ¢4 = n/2, the notch location, and o4 = 0.1, the notch

width.

Table 3 provides the array gain (AG) calculated from planar-xz-equal.f and volumetric-
grid.f assuming the above vertical noise power distribution. The gain over isotropic noise varies
from 6.8 dB to 7.9 dB; certainly, the vertical noise profile has a significant effect on AG
calculations.

Table 3. Array Gain (AG) for Nonisotropic Noise Calculated From
the planar-xz-equal.f and volumetric-grid.f Programs

Frequency (Hz) DI planar-xz-equal.f (dB) | DI volumetric-grid.f (dB)
4,000 45.54 45.32
5,000 47.87 47.65
6,000 49.73 49.52
7,000 51.28 51.07
8,000 52.60 52.38

APPROXIMATION FOR DIRECTIVITY INDEX

The approximation 10 log(41tA/A2) for the directivity index DI of an equi-spaced baffled
planar array is only applicable for an unweighted array with half-omni directionality and an
isotropic noise field. However, the restriction to an unweighted array can be eliminated if the
area A is replaced by the product of effective lengths in the x- and z-directions. That is, we have,
more generally, for a planar array with spacings dyx and d,

4r Ex EZ
DI=101lo —17-— s 29)

where effective lengths Ey and E, are given, respectively, by
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i)
g =l /| (30)

X x L » ’ z z N 2
:EBZ Eian
£=1 n=1

For the isotropic noise example above, at 4,000 Hz, but now with Hanning weighting in
the x-direction and flat weighting in the z-direction, the DI as found from the approximation is
33.88 dB, whereas the exact value turns out to be 33.85 dB, a discrepancy of only 0.03 dB. And
for Hanning weighting in both directions, the approximate DI is 32.12 dB, whereas the exact
value is 32.00 dB, a difference of 0.12 dB.

0
g ,
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w
< 4
@
w
S
2
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E'a V
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0 T il 3n T
4 2 4

POLAR ANGLE ¢

Figure 3. Typical Variation of Vertical Noise Directionality Assuming Noise Power
Dependence D (¢) With A= 0.9, ¢, = /2, and o4 = 0.1
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APPENDIX A — APPROXIMATION TO THE ELEMENT RESPONSE

The power response of a baffled directive receiving element can often be fairly well
approximated by cos(x) for [x| < /2, where x is the angle between the element boresight angle
and the planewave arrival angle. For [x| > m/2, the response is ideally zero. The discontinuity in
slope of the response at x = *m/2 creates a problem for any numerical integration technique

which does not specifically account for the locations of these two singularities.

In this appendix, we will derive an analytic approximation to this truncated cosine, where
the degree of fit can be as tight as desired. Actually, since in practice, the truncated cos(x)
response itself is not exact, an approximation to it is quite satisfactory and acceptable. It will
immediately be obvious how the method extends to a truncated version of cosV(x), where power

v is arbitrary.
We begin by observing that
cos(x) = exp[ln cos(x)] for|x|<m/2. (A-1)
Alternatively,
cos(x) = exp[In(l - {1 - cos(x)})] = exp[In(1 — u)], (A-2)
where
u=1-cos(x). (A-3)
But, from the expansion
1n(1—-u)=—(u+%u2+%u3+---) for u|<1, (A-4)

that is, [x| < m/2, we immediately obtain

A-1




cos(x) = exp[—(u + %uz + —31’—u3 +- ﬂ for |x| < —725 , (A-5)

where u =1 - cos(x) from (A-3).

Now, suppose we terminate the infinite series in (A-5) at I terms, and use the
approximation (where T{ } denotes truncated)

11

T{cos(x)} = exp|:—(u +%u2 +%u3 +-~+-I-u )] (A-6)

for all x in the extended range [-x, %], with u = 1 - cos(x). For large I, the right-hand side of (A-6)
is a good approximation to cos(x) for [x| < /2. And, for |x| > /2, where u > 1, the u series
would tend to e as I — e, meaning that the right-hand side of (A-6) is approximating zero, as
desired. Furthermore, the right-hand side of (A-6) is always positive for all x, it has period 27 in

X, and it is smooth for all x. A sample plot of the left-hand side and right-hand side of (A-6) for
I=5is shown in figure A-1. The transition in behavior near x = +%/2 is now smooth.

The approximation in (A-6) uses cos(x) directly, namely, in the form u =1 - cos(x). But,
cos(x) can be interpreted as the direction cosine between the element boresight angle and the
angle of arrival. Thus, any other element response, that can be written directly in terms of this
quantity, can thereby use (A-6).

For example, for a power of cos(x), there follows from (A-6),

T{cos’(x)} = exp[~u(u + -;—uz + %u3 e +%u1):| (A-7)

for [x| € [-m,m], withu =1 - cos(x).
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EXPONENTIAL APPROXIMATION (A-6)
FORI=5

X —»

Figure A-1. Sample Plot of Equation A-6
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APPENDIX B — Program volumetric-grid.f

This program allows for arbitrary element locations {Xz} for 14 <L and {zy}, {yn} for
1<n <N. However, the particular example programmed utilizes equal spacing dx in the
x-direction and equal arc lengths ds in the polar angle ¢, for simplicity. Both of these
assumptions can easily be generalized to fit the users cases. Then, the two lines assigning values
to dx and ds would be eliminated.

Coding for Hamming array weighting has not been included in this and the following
appendix, since these array programs can utilize unequal spacings in the x- and/or z-directions.
It is certainly possible to include nonuniform weighting, provided that the desired shading
function is properly projected onto the actual unequal element locations, accounting for their
density in space.

COMMON INPUT PARAMETERS

K =400, number of azimuthal 8 samples over (0,27)
M = 192, number of polar ¢ samples over (0,7)
f=4,000 Hz

¢ =4,900 ft/sec

05 = m/2, Og = m/2; broadside steering

Ax = 3.5 inches, A; = 3.6 inches for planar array

Ax = 3.5 inches, Ag = 3.6 inches for volumetric array

PROGRAM SYMBOL MATH SYMBOL AND EXPLANATION
lc L, number of elements in x-coordinate
nc N, number of elements in z-coordinate
kc K, number of 6 samples over (0,2w)
mc M, number of ¢ samples over (0,7)
ng total number of gauss locations and weights
wX storage of L array weights for x-coordinate
WZ storage of N array weights for z-coordinate
phis ds, polar steering angle (radians)
thetas s, azimuthal steering angle (radians)
dphi Ag, phi increment in search for maximum
dtheta Ag, theta increment in search for maximum
j gauss case number, 1<j<12




w N -

implicit real*8(a-h,o-z) ! volumetric—grid.f

real sec,dtime,time(1l:2)

parameter (1c=200, nc=50,kc=400,ng=2520) ! kc = number of theta samples
dimension x(1l:1c),y(l:nc),z(l:nc),psi(l:nc)

dimension wx(l:1lc),wyz(l:nc),ax(l:1c),ayz(l:nc)

dimension xx(1l:ng),ww(l:ng),c(l:kc),s(l:kc),cn(l:nc),sn(l:nc)
dimension mm(0:12)/0,16,24,32,48,64,96,128,192,256, 384,512,768/
format (d28.18) ! case 1 2 3 4 5 6 7 8 9 10 11 12 <—— j
format (2d25.16)

format ("sec", 4el5.5)

pi=4.d0*atan(1.d0)

sec=dtime (time) ! use < legendre-array-dp
read 1, xx(l:ng) ! gauss-legendre locations
read 1, ww(l:ng) ! gauss—legendre weights

sec=dtime (time)
print 3, sec,time

print 2

ampd=. 9d0 ! relative power dip, .le. 1
phid=pi*.5d0 ! polar angle of dip, radians
sigd=.1d0 ! width of dip, radians

frequency, hertz
sound speed, inches/second

freq=4000.d0
speed=4900.40*12.4d0

dx=3.5d0 X spacing, inches

ds=3.6d0 arc length spacing, inches
rc=200.d0 radius of array, inches
a=0.do0 lower limit on phi, radians
b=pi upper limit on phi, radians

phis=pi*.5d0
thetas=pi*.5d0
dphi=.0001d0
dtheta=.0001d0
jl=8

j2=10

polar steering angle, radians
azimuth steering angle, radians
phi increment in search, radians
theta increment in search, radians
starting gauss case, jl .ge. 1
ending gauss case, j2 .le. 12

wavelength=speed/freq
cx=2.d0*pi/wavelength*dx
cyz=2.d0*pi/wavelength*rc

wl=0.d0

do n=1, 1lc

x(n)=cx*n ! x element locations (arbitrary)
wx(n)=1.d0 ! x element weights (arbitrary)
wl=wl+wx (n)

end do

w2=0.d0

t=(nc+1l) *.5d0

da=ds/rc ! element angular spacing, radians
do n=1,nc

an=da* (t—-n)
y(n)=cyz*cos (an)
z(n)=cyz*sin(an)
psi(n)=pi*.5d0-an
wyz (n)=1.d40
w2=w2+wyz (n)

end do
w3=wl*wl*w2*w2

y element locations (arbitrary)
z element locations (arbitrary)
element polar angles in y,z plane
yz element weights (arbitrary)

s e amm pmm

t=sin(phis)

u=cos (thetas) *t

do n=1, lc

ax(n)=x(n)*u B-2
end do




t=sin(thetas) *t
u=cos (phis)

do n=1,nc

ayz (n)=y(n)*t+z (n)*u
end do

dt=2.d0*pi/kc ! theta sampling increment
do k=1,kc

t=k*dt

c(k)=cos(t)

s(k)=sin(t)

end do

do n=1,nc
t=psi(n)
cn(n)=cos (t)
sn(n)=sin(t)
end do

bal=(b+a) *.5d0
ba2=(b-a) *.5d0
m22=0
big=0.d0
£3=1.d0/3.d0

do j=1,12

mc=mm (j) ! mc = number of phi samples
m22=m22+mm (j—1)

if (j .1t. jl) go to 9

if (§ .gt. j2) go to 9

v=0.d0

two=0.d0

do m=1,mc

win=ww (m+m22)

phim=bal+ba2*xx (m+m22)

sm=sin (phim)

cm=cos (phim)

dm= (phim-phid) /sigd

drn=1.d0-ampd*exp (-.5d0*dm*dm) ! noise power distribution
vk=0.d0

two=two+wm*sm*dm

do k=1, kc ,
cs=c(k) *sm

ss=s (k) *sm

ar=0.d0

ai=0.d0

br=0.d40

bi=0.d0

do n=1,1lc
wn=wx (n)

t=x(n) *cs—-ax(n)
ar=ar+wn*cos (t)
ai=ai+wn*sin(t)
end do !n

do n=1,nc

u=1.d0-sn(n)*ss-cn(n) *cm ! element response:
rn=exp (-u* (1.d0+u* (.5d0+u* (t3+u* (.25d0+u*.2d0)))))
wn=wyz (n) *rn

t=y(n) *ss+z (n) *cm—ayz(n)

br=br+wn*cos (t)

bi=bi+wn*sin(t)

end do !n B-3
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21

12

ab=(ar*ar+ai*ai) * (br*br+bi*bi)
vk=vk+ab

if (ab .1lt. big) go to 10
big=ab

phib=phim

thetab=k

end do 'k

v=v+wm*sm*dm*vk
end do 'm

v=v*baz2*dt ! trapezoidal and gauss rules
two=two*ba2

dfw=two*2.d0*pi*w3/v

diw=10.d0*10ogl0 (dfw)

print 21, v

format ("double integral”,d25.16)

print 4, dfw,diw

format ("dfw, diw",2d25.16)

dfb=two*2.d0*pi*big/v ! directivity factor
dib=10.d0*10gl0 (dfb) ! directivity index
print 5, dfb,dib

format ("dfb, dib",2d25.16)

sec=dtime (time)
print 3, sec,time
end do !j

thetab=thetab*dt

print 2

print 6, big,w3 ! big = maximum power response
format ("big, w3",2d25.16)

print 7, phib,thetab ! angles after coarse search
format ("phib, thetab",2d25.16)

phio=phib ! fine search for maximum,
thetao=thetab ! starting from phib, thetab
do i=-1,1

phi=phio+dphi*i
cm=cos (phi)
sm=sin (phi)

do j=-1,1
theta=thetao+dtheta*j
cs=cos (theta) *sm
ss=sin (theta) *sm
ar=0.d0

ai=0.do

br=0.d0

bi=0.d0

do n=1,1c

wn=wx (n)

t=x(n) *cs—-ax(n)
ar=ar+wn*cos (t)
ai=ait+wn*sin(t)
end do !'n

do n=1,nc
u=1.d0-sn(n) *ss—cn(n) *cm ! element response:
rn=exp (-u* (1.d0+u* (.5d0+u* (t3+u* (.25d0+u*.2d0)))))
WNn=wyz(n) *rn

t=y(n) *ss+z (n) *cm—-ayz (n)
br=br+wn*cos(t)
bi=pbi+wn*sin(t)

end do !n
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14

13

16

ab=(ar*ar+ai*ai) * (br*br+bi*bi)
if (ab .le. big) go to 11
big=ab

phib=phi

thetab=theta

end do !jJ

end do !'1i

if (abs (phib-phio) +abs (thetab-thetao) .gt. 0.d0) go to 12
print 2

print 8, big

format ("big",2d25.16)

print 7, phib,thetab ! angles after fine search
dfb=two*2.d0*pi*big/v ! directivity factor
dib=10.d0*1ogl0 (dfb) ! directivity index

print 5, dfb,dib

phib=phis ! fine search for maximum,
thetab=thetas ! starting from phis, thetas
big=0.d0

k=0

phio=phib

thetao=thetab

do i=-1,1

phi=phio+dphi*i

if (k .eq. 0) phi=phis
cm=cos (phi)

sm=sin (phi)

do j=-1,1
theta=thetao+dtheta*j
if (k .eqg. 0) theta=thetas
cs=cos (theta) *sm
ss=sin(theta) *sm
ar=0.d0

ai=0.do0

br=0.d0

bi=0.d0

do n=1, 1c
wn=wx (n)

t=x(n) *cs—ax (n)
ar=ar+wn*cos (t)
ai=ai+wn*sin(t)
end do !n

do n=1,nc

u=1.d0-sn(n)*ss—-cn(n) *cm ! element response:
ro=exp (-u* (1.d0+u* (.5d0+u* (t3+u* (.25d0+u*.2d0)))))
wn=wyz (n) *rn

t=y(n) *ss+z (n) *cm—ayz (n)

br=br+wn*cos (t)

bi=bi+wn*sin(t)

end do !n

ab=(ar*ar+ai*ai) * (br*br+bi*bi)
if (ab .le. big) go to 13
big=ab

phib=phi

thetab=theta

if (k .eq. 0) go to 16

end do !j
end do !i
k=k+1

if (k .eq. 1) go to 14




15

1f (abs(phib—phio) +abs (thetab—-thetao) .gt. 0.d0) go to 14

print 2

print 8, big

print 7, phib,thetab
dfs=two*2.d0*pi*big/v
dis=10.d0*1logl0 (dfs)
print 15, dfs,dis

format ("dfs, dis",2d25.16)

end

angles near steering direction
directivity factor
directivity index




APPENDIX C — Program planar-xz-grid.f

This program allows for arbitrary element locations { X, } for 1</ <L and {z,} for
1<n £N. However, the particular example programmed utilizes two equal spacings dx and dz,
for simplicity; these assumptions can easily be generalized to fit the users cases. Then, the two
input lines assigning values to dx and dz would be eliminated.

C-1




w N

implicit real*8(a-h,o-z) ! planar-xz-grid.f

real sec,dtime,time(1:2)

parameter (1c=200,nc=50, kc=400,ng=2520) ! kc = number of theta samples
dimension x(1l:1c),z(l:nc),wx(l:1c),wz(l:nc),ax(l:1c),az(l:nc)
dimension xx(l:ng),ww(l:nqg),c(l:kc),s(l:kc)

dimension mm(0:12)/0,16,24,32,48,64,96,128,192,256,384,512,768/

format (d28.18) ! case 1 2 3 4 5 ¢ 7 8 9 10 11 12 <— j
format (2d25.16)

format ("sec", 4el5.5)

pi=4.d0*atan(1.d0)

sec=dtime (time) ! use < legendre-array-dp
read 1, xx(1l:ng) ! gauss-—-legendre locations
read 1, ww(l:nqg) ! gauss—legendre weights

sec=dtime (time)
print 3, sec,time

print 2

ampd=. 940 ! relative power dip, .le. 1
phid=pi*.5d0 ! polar angle of dip, radians
sigd=.1d0 ! width of dip, radians

freg=4000.d0
speed=4900.d0*12.d0

frequency, hertz
sound speed, inches/second

dx=3.5d0 X spacing, inches
dz=3.6d40 Zz spacing, inches
a=0.do0 lower limit on phi, radians
b=pi upper limit on phi, radians

phis=pi*.5d0
thetas=pi*.5d0
dphi=.0001d0
dtheta=.0001d0
j1=8

j2=10

polar steering angle, radians
azimuth steering angle, radians
phi increment in search, radians
theta increment in search, radians
starting gauss case, jl .ge. 1
ending gauss case, j2 .le. 12

wavelength=speed/freq
cx=2.d0*pi/wavelength*dx
cz=2.d0*pi/wavelength*dz

wl=0.d0

do n=1,1lc

X (n)=cx*n ! x element locations (arbitrary)
wx (n)=1.d0 ! x element weights (arbitrary)
wl=wl+wx(n)

end do

w2=0.d0

do n=1,nc

z(n)=cz*n !
wz (n)=1.d0 !
w2=w2+wz (n)

end do

wW3=wl*wl*w2*w2

N

element locations (arbitrary)
element weights (arbitrary)

N

u=cos (thetas) *sin(phis)
do n=1, lc

ax(n)=x(n)*u

end do

u=cos (phis)

do n=1,nc

az(n)=z(n) *u

end do

dt=2.d0*pi/kc ! theta sampling increment
do k=1,kc
t=k*dt ! theta(k)
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c(k)=cos (t)
s(k)=sin(t)
end do

bal=(b+a) *.5d0
ba2=(b—-a) *.5d0
m22=0

big=0.d0
£3=1.d0/3.d0

do j=1,12

mc=mm () ! mc = number of phi samples
m22=m22+mm(j—1)

if (3 .1t. jl) go to 9

if (j .gt. j2) go to 9

v=0.d0

two=0.d0

do m=1,mc

wm=ww (m+m22)
phim=bal+ba2*xx (m+m22)
sm=sin (phim)

cm=cos (phim)

dm= (phim-phid) /sigd
dm=1.d0-ampd*exp (—.5d0*dm*dm) ! noise power distribution
vk=0.d0
two=two+wm*sm*dm
br=0.d0

bi=0.d0

do n=1,nc

WN=wz (n)

t=z(n) *cm-az (n)
br=br+wn*cos (t)
bi=bi+wn*sin (t)
end do !n
bsg=br*br+bi*bi

do k=1, kc

cs=c (k) *sm

ss5=5 (k) *sm

u=1.d0-ss ! element response:
rsg=exp(-2.d0*u* (1.d0+u* (.5d0+u* (t3+u* (.25d0+u*.2d0)))))
ar=0.d0

ai=0.4d0

do n=1, 1c
wn=wx (n)

t=x(n) *cs—ax(n)
ar=ar+wn*cos (t)
ai=ai+wn*sin(t)
end do !'n

ab=rsqg* (ar*ar+ai*ai) *bsq
vk=vk+ab

if (ab .1lt. big) go to 10
big=ab

phib=phim

thetab=k

end do 'k

v=v+wm*sm*dm*vk
end do 'm

v=v*baz*dt ! trapezoidal and gauss rules
two=two*baz2
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dfw=two*2.d0*pi*w3/v

diw=10.d0*1ogl0 (dfw)

print 21, v

format ("double integral",d25.16)

print 4, dfw,diw

format ("dfw, diw",2d25.16)

dfb=two*2.d0*pi*big/v ! directivity factor
dib=10.d0*1ogl0 (dfb) ! directivity index
print 5, dfb,dib

format ("dfb, dib",2d25.16)

sec=dtime (time)
print 3, sec,time
end do !'j

thetab=thetab*dt
print 2

print 6, big,w3 ! big = maximum power response

format ("big, w3",2d25.16)
print 7, phib,thetab ! angles after coarse search
format ("phib, thetab",2d25.16)

phio=phib ! fine search for maximum,
thetao=thetab ! starting from phib, thetab
do i=-1,1

phi=phio+dphi*i

cm=cos (phi)

sm=sin (phi)

do j=-1,1

theta=thetao+dtheta*j R

cs=cos (theta) *sm

ss=sin(theta) *sm

u=1.d0-ss !  element response:
rsg=exp(-2.d0*u*(1.d0+u* (.5d0+u* (t3+u*(.25d0+u*.2d0)))))
ar=0.d0

ai=0.do0

br=0.d0

bi=0.d0

do n=1, lc
wn=wx (1)

t=x(n) *cs—ax(n)
ar=ar+wn*cos (t)
ai=ai+wn*sin(t)
end do !n

do n=1,nc

wn=wz (n)

t=z(n) *cm—-az (n)
br=br+wn*cos(t)
bi=bi+wn*sin(t)
end do !'n

ab=rsqg* (ar*ar+ai*ai) * (br*br+bi*bi)
if (ab .le. big) go to 11

big=ab

phib=phi

thetab=theta

end do !j

end do !'i

if (abs(phib-phio)+abs(thetab—-thetao) .gt. 0.d0) go to 12
print 2

print 8, big

format ("big",2d25.16)

print 7, phib,thetab ! angles after fine search
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dfb=two*2.d0*pi*big/v ! directivity factor
dib=10.d0*1logl0 (dfb) ! directivity index
print 5, dfb,dib

phib=phis ! fine search for maximum,
thetab=thetas ! starting from phis,thetas
big=0.d0

k=0

phio=phib

thetao=thetab

do i=-1,1

phi=phio+dphi*i

if (k .eg. 0) phi=phis

cm=cos (phi)

sm=sin (phi)

do j=-1,1

theta=thetao+dtheta*j

if (k .eg. 0) theta=thetas

cs=cos (theta) *sm

ss=sin(theta) *sm

u=1.d0-ss ! element response:
rsg=exp (-2.d0*u* (1.d0+u* (.5d0+u* (t3+u* (.25d0+u*.2d0)))))
ar=0.d40

ai=0.do

br=0.4d0

bi=0.d0

do n=1,1c
wn=wx (n)

t=x(n) *cs—ax(n)
ar=ar+wn*cos (t)
ai=ai+wn*sin(t)
end do !n

do n=1,nc
wn=wz (n)

t=z(n) *cm-az (n)
br=br+wn*cos (t)
bi=bi+wn*sin(t)
end do !n

ab=rsqg* (ar*ar+ai*ai) * (br*br+bi*bi)
if (ab .le. big) go to 13

big=ab

phib=phi

thetab=theta

if (k .eqg. 0) go to 16

end do !j
end do !'i
k=k+1

if (k .eqg. 1) go to 14

if (abs(phib—phio)+abs (thetab-thetao) .gt. 0.d0) go to 14
print 2
print 8, big

print 7, phib,thetab ! angles near steering direction
dfs=two*2.d0*pi*big/v ! directivity factor
dis=10.d0*logl0 (dfs) ! directivity index

print 15, dfs,dis
format ("dfs, dis",2d25.16)

end

C-5/C-6
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APPENDIX D — Program planar-xz-equal.f

In this appendix, coding for Hamming array weighting has been included in the listed
program (as an option) for either or both of the x- and z-coordinates. However, it has been
exercised in only two of the numerical examples that we present here.
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22
23

24
25

implicit real*8(a-h,o0-2z) !
real sec,dtime,time(1:2)

planar—-xz-equal.f

parameter (1¢=200,nc=50,kc=400,ng=2520) ! kc = number of theta samples
dimension xx(l:ng),ww(l:ng),wx(l:1c),wz(l:nc),c(l:kec),s(1l:kc)
dimension mm(0:12)/0,16,24,32,48,64,96,128,192,256,384,512,768/

format (d28.18) ! case 1 2 3 4
format (2d25.16)

format ("sec", 4el15.5)
pi=4.d0*atan(1.4d0)

sec=dtime (time) !
read 1, xx(l:ng) !
read 1, ww(l:ng) !
sec=dtime (time)

print 3, sec,time

print 2

ampd=. 9d0 !
phid=pi*.5d0 !
sigd=.1d0 !

freq=4000.d0
speed=4900.d0*12.d0
dx=3.5d0
dz=3.6d0
a=0.do0

b=pi
phis=pi*.5d0
thetas=pi*.5d0
dphi=.0001d0
dtheta=.0001d0
jl=8

j2=10

wavelength=speed/freq
cx=2.d0*pi/wavelength*dx
cz=2.d0*pi/wavelength*dz
bx=cx*cos (thetas) *sin (phis)
bz=cz*cos (phis)

wl=0.d0

t=(lc+1l)*.5d0 .

if (lc .gt. 1) go to 22

u=0.d0

go to 23

u=2.d0*pi/ (lc-1)

do n=1, 1c

wx (n)=.54d0+.46d0*cos (u*(n~t)) !

wx (n)=1.d0 !

wl=wl+wx (n)
end do

w2=0.d0

t=(nc+1) *.5d0

if (nc .gt. 1) go to 24
u=0.do0

go to 25

u=2.d0*pi/ (nc-1)

do n=1,nc

wz (n)=.54d0+.46d0*cos (u* (n—-t)) !
wz (n)=1.d0 !

w2=w2+wz (n)
end do
w3=wl*wl*w2*w2

dt=2.d0*pi/kc !

6 7 8 9 10 11 12 <— j

use < legendre-array-dp
gauss—legendre locations
gauss—legendre weights

relative power dip, .le. 1
polar angle of dip, radians
width of dip, radians

frequency, hertz

sound speed, inches/second

X spacing, inches

z spacing, inches

lower limit on phi, radians
upper limit on phi, radians
polar steering angle, radians
azimuth steering angle, radians
phi increment in search, radians
theta increment in search, radians
starting gauss case, jl .ge. 1
ending gauss case, j2 .le. 12

X element weights (Hamming)
x element weights (arbitrary)

z element weights (Hamming)
z element weights (arbitrary)

theta sampling increment
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do k=1, kc

t=k*dt I theta (k)
c(k)=cos (t)

s(k)=sin(t)

end do

bal=(b+a) *.5d0
ba2=(b—-a) *.5d0
m22=0

big=0.d0
£3=1.d40/3.d0

do j=1,12

mc=mm (Jj) ! mc = number of phi samples
m22=m22+mm(j—-1)

if (3 .1t. jl) go to 9

if (3 .gt. j2) go to 9

v=0.d0

two=0.d0

do m=1,mcC

wm=ww (m+m22)
phim=bal+ba2*xx (m+m22)
sm=sin (phim)

fx=cx*sm

ez=cz*cos (phim)-bz
dm=(phim-phid) /sigd
dm=1.d0-ampd*exp (—.5d0*dm*dm) ! noise power distribution
vk=0.d0
two=two+wm*sm*dm
br=0.d0

bi=0.d0

r=1.d0
g=0.d0
ce=cos (ez)
se=sin(ez)
do n=1,nc
t=r*ce-g*se
g=g*ce+r*se
r=t

wn=wz (n)
br=br+wn*r
bi=bi+wn*qg
end do !n
bsg=br*br+bi*bi

do k=1, kc

u=1.d0-s (k) *sm ! element response:
rsg=exp (-2.d0*u* (1.d0+u* (.5d0+u* (t3+u* (.25d0+u*.2d0)))))
ex=fx*c (k) -bx

ar=0.d0

ai=0.d0

r=1.d0
q=0.4d0
ce=cos (ex)
se=sin (ex)
do n=1, 1lc
t=r*ce—-g*se
g=g*ce+r*se
r=t

wn=wx (n)
ar=ar+wn*r
ai=ait+wn*g
end do !n
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12

ab=rsqg* (ar*ar+ai*ai) *bsq
vk=vk+ab

if (ab .lt. big) go to 10
big=ab

phib=phim

thetab=k

end do 'k

v=v+wm*sm*dm*vk
end do 'm

v=v*ba2*dt ! trapezoidal and gauss rules
two=two*baz2

dfw=two*2.d0*pi*w3/v

diw=10.d0*1oglQ (dfw)

print 21, v

format ("double integral",d25.16)

print 4, dfw,diw

format ("dfw, diw",2d25.16)

dfb=two*2.d0*pi*big/v ! directivity factor
dib=10.d0*1logl0 (dfb) ! directivity index
print 5, dfb,dib

format ("dfb, dib",2d25.16)

sec=dtime (time)
print 3, sec,time
end do !j

thetab=thetab*dt

print 2

print 6, big,w3 ! big = maximum power response
format ("big, w3",2d25.16)

print 7, phib,thetab ! angles after coarse search
format ("phib, thetab", 2d25.16)

phio=phib ! fine search for maximum,
thetao=thetab ! starting from phib, thetab
do i=-1,1

phi=phio+dphi*i
sm=sin (phi)
fx=cx*sm
ez=cz*cos (phi)-bz
br=0.d0

bi=0.d0

r=1.d0
q=0.d0
ce=cos (ez)
se=sin(ez)
do n=1,nc
t=r*ce—-g*se
g=g*ce+r*se
r=t

wn=wz (n)
br=br+wn*r
bi=bi+wn*q
end do !'n
bsgq=br*br+bi*bi

do j=-1,1

theta=thetao+dtheta*j

u=1.d0-sin(theta) *sm ! element response:
rsg=exp (-2.d0*u* (1.d0+u* (.5d0+u* (t3+u* (.25d0+u*.2d0)))))
ex=fx*cos (theta)-bx

ar=0.d0
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14

ai=0.do0

r=1.d0
q=0.4d0
ce=cos (ex)
se=sin (ex)
do n=1, 1c
t=r*ce—-g*se
g=g*ce+r*se
r=t

wn=wx (n)
ar=ar+wn*r
ai=aitwn*q
end do !n

ab=rsqg* (ar*ar+ai*ai) *bsq
if (ab .le. big) go to 11
big=ab

phib=phi

thetab=theta

end do !j

end do !'1i

if (abs (phib—-phio)+abs (thetab-thetao) .gt. 0.d0) go to 12
print 2

print 8, big

format ("big", 2d25.16)

print 7, phib,thetab ! angles after fine search
dfb=two*2.d0*pi*big/v ! directivity factor
dib=10.d0*1ogl0 (dfb) ! directiviiy index

print 5, dfb,dib

phib=phis ! fine search for maximum,
thetab=thetas : !  starting from phis, thetas
big=0.d0

k=0

phio=phib

thetao=thetab

do i=-1,1

phi=phio+dphi*i

if (k .eq. 0) phi=phis
sm=sin (phi)

fx=cx*sm

ez=cz*cos (phi)-bz
br=0.d0

bi=0.d0

r=1.d0
g=0.d0
ce=cos (ez)
se=sin(ez)
do n=1,nc
t=r*ce—-g*se
g=q*cetr*se
r=t

wn=wz (n)
br=br+wn*r
bi=bi+wn*q
end do !n
bsg=br*br+bi*bi

do j=-1,1

theta=thetao+dtheta*j

if (k .eq. 0) theta=thetas

u=1.d0-sin(theta) *sm ! element response:
rsg=exp (-2.d0*u* (1.d0+u* (.5d0+u* (£t3+u* (.25d0+u*.2d0)))))
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ex=fx*cos (theta)-bx
ar=0.d0
ai=0.do

r=1.d0
g=0.d0
ce=cos (ex)
se=sin (ex)
do n=1, 1c¢c
t=r*ce—-g*se
g=g*cet+r*se
r=t

wn=wx (n)
ar=ar+wn*r
ai=ait+wn*q
end do 'n

ab=rsqg* (ar*ar+ai*ai) *bsg
if (ab .le. big) go to 13
big=ab

phib=phi

thetab=theta

if (k .eq. 0) go to 16

end do !j
end do !'i
k=k+1

if (k .eqg. 1) go to 14

if (abs(phib-phio)-+abs (thetab-thetao)

print 2

print 8, big

print 7, phib,thetab
dfs=two*2.d0*pi*big/v
dis=10.d0*1ogl0 (dfs)

print 15, dfs,dis

format ("dfs, dis",2d25.16)

end

angles near steering direction

directivity factor
directivity index

.gt. 0.d0) go to 14
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